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From the classical equation of motion, the radiation emitted by an electron in an external magnetic field
undergoing Coulomb interactions is derived. It is shown that the several spectral components corresponding
to magnetic and Coulomb force terms cannot be interpreted simply by saying that the total spectrum is com-
posed of a cyclotron line superimposed on the continuum from the bremsstrahlung emission in the absence

of the magnetic field.

1. INTRODUCTION

N previous papers,”~2 we have shown that free elec-
trons in the presence of ions and an external mag-
netic field emit a continuum with a sharp resonance at
the cyclotron frequency. It is suggestive to identify the
continuum with bremsstrahlung, admitting that its
spectral features may be somewhat altered by the
presence of the magnetic field, and to equate the
resonance emission with the cyclotron line undergoing
broadening effects by the electron-ion interactions.

This identification, however, is by no means self-
evident. The quantum-mechanical treatment shows that
the broad-band continuum and the resonance line both
arise from the same solution of the wave equation, with
no apparent distinction in the spectrum. In fact, the
results suggest that there is no physical basis for the
separation of the emission into two components. This is
indeed the case.

It was stated in the introduction to Paper I that the
whole problem of radiation due to Coulomb interactions
in a magnetic field in principle could be obtained on the
basis of classical theory, but that a quantum theory
despite the cumbersome formalism is still easier to
handle if the main interest is placed on obtaining accu-
rate cross sections. Now, where these accurate cross
sections are available for the whole spectrum, this
argument is no longer valid, and a classical theory
appears more adequate as well as simpler.

We derive in Sec. 2 the radiation spectrum from a
classical equation of motion retaining appropriate
damping and field terms as parameters. In this manner,
we avoid the complications inherent in their explicit
computations. We then proceed (Sec. 3) to calculate the
radiated energy, coming back to the equation of motion
and its representation of the interactions by force terms
(Sec. 4). In Sec. 5, the initial value contribution is
calculated. Finally, the results are discussed in Sec. 6.
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2. SOLUTION OF THE EQUATION OF MOTION

The classical calculation of the radiation spectrum
rests on computing the Fourier components of the
acceleration to which the radiating particle is subjected.
For this purpose, we have to solve the equation of
motion which we write for a particle of charge g, mass
m, and position vector r, in the form

d’r ¢
m—=—1 x H4+F—»i.
ar ¢

ey

The phase terms on the right-hand side represent the
interaction of the particle with a uniform external mag-
netic field H, and the results of interactions with
Coulomb fields which we split into a component F
perpendicular to the instantaneous direction of motion
and a term »f parallel to the instantaneous velocity
vector.

Making the z axis the direction of the magnetic field,
we find for the x and y components of the acceleration

mi=(1/¢c)qyH—vi+F, 2)
and
mij=(—1/c)gdH—vj+F,. ©)
With
p=x+1y, $=F +iF,, (4)
we obtain
mp=(—1i/c)gHp—vp+2. )
Equation (5) has the solution
T
p=aec 9T+ (1/m)e‘9T/ VT (1) dt, (6)
where ’
Q=iw.+v/m, w.=qH/mc, (7
and
a=1,(0)+1v,(0) (8)

is a complex constant depending on the velocity of the
particle at an initial time ¢=0. The acceleration p is
then obtained by differentiating Eq. (6) with respect
to T.
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3. RADIATED ENERGY
Returning to real variables with
I= xi+yj ’ (9)

we have for the radiation emitted between time 0 and T°

262 T
I(T)=—/ IAOB AGLS (10)
363 0
Next, we define the Fourier transform
+o0
()= (211-)—1/2/ 1, exp(twT)dw , (11)
and -
+o0
r,= (2m)712 / r(t) exp(—1iwt)dt, (12)

where we take r(f)=0 for all {<0, since we are only
concerned with displacements caused by the force F in
the interval between initial time 0 and observing time 7.

Differentiating Eq. (11) with respect to T and in-
serting the resulting expression into Eq. (10), we obtain

262 T 00 +-o0
I(T)=———/ dlf(27r)"1/2/ dow (271')“1/2/ do’
363 0 —00 —00

X w? exp (iwl)w'

Xexp (i’ ) {xXte+Vuyor} F1o(T), (13)

where the contribution 7,(7) is due to the first term in
Eq. (6) which is independent of ® and will be discussed
separately in Sec. 5. Making use of the Fourier trans-
form of the & function,*

1 0
. / expli (ot ]di=36(w+o"), (14)

we can simplify Eq. (13), which transforms in the limit
T —o to

2¢2
I(T—>»)=—
33

40
X%/ w{xet ot Voy—o}do+Io(T). (15)

We now express the Fourier components of « and y in
terms of w and F which is achieved with the aid of Eqs.
(4) and (5). After some manipulations and introducing
the complex conjugates

(16)

4 Equation (14) in this form is, strictly speaking, incorrect, since
the principal part contribution has been left out. This contribution
is only then of importance if there are singularities in (xu%w
+9yu¥er) for w+w’5£0. Examination of x.x.r and y.y.r, however,
shows that this is not the case as long as time intervals much
longer than the reciprocal of the collision frequency » from Eq. (1)
are considered.

* *
Ko =%—0 y yw —y—w
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of x, and y., we have
Fo=5F o o[ Q1 H-4iF, J[O -] (1)
and
Vo= —3F , [ Q1—QVH3F, OO (18)

Here, F,,, and F,,, are the Fourier transforms of the
x and y components of F, defined in the same manner as
r, in Egs. (11) and (12),

Qy = —mwEmow+ive. (19)

The radiated energy is now readily obtained in terms
of yand F:

2e21 = w?
I(T——)oo)z——/ dw{F,F*}—N+1o(T), (20)
32/ m?
where
N=[(0—w)*+v*/m* ]+ [ (0tw)*+»*/m*T?, (20a)
and
{F,F*}=[F ;,oF z,o*+Fy .F %] (20b)

The starred quantities refer as before to the complex
conjugates. Terms linear in F, and terms of the form
F,oFy.*, etc., were neglected on the grounds that they
cancel out in the average if the scattering ions that are
responsible for the Coulomb fields represented by F are
located at random. The randomness of ion location
(and, for that matter, of all plasma correlations, dis-
persive effects, etc.) was one of the basic assumptions
in the previous papers I-III. A similar argument inci-
dentally was brought forth by Scheuer? in his treatment
of bremsstrahlung.

Equation (20) describes the total amount of energy
radiated by the electron in the presence of Coulomb
scatterers and an external magnetic field. It thus
corresponds to the expressions derived in I-III. For
instance, if properly normalized to unit time, Eq. (20)
becomes equivalent to Eq. (21) of paper III.

4. SEPARATION INTO MAGNETIC AND
COULOMB CONTRIBUTIONS

Let us now turn back to Eq. (10) and treat the same
problem once more, but making use of the force com-
ponents introduced by Eq. (1):

2¢1 (T q q
(IT)=~—3§/ dt{——i‘XH~—i‘XH
0

3¢ mc mc

i 1 v 1
+—F(@#)-—F (t)+2<wc———>i' -—F®)
mm m

m

2

Fop ). @D
m2

5 P. A. G. Scheuer, Monthly Notices Roy. Astron. Soc. 120, 231
(1960).
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The first term can be reduced by the methods of the
last section to the expression
W

I (T———>°o)=——-—/
' 322

dol PPN (). (22)
0 m?

If v/m<w, only frequencies w=~w, contribute signifi-
cantly to the integral in (22) and the bracket containing
terms such as

Fx,;};uzFa:,iwc; F;u.iw%F:‘ld:wc (23)

can be taken outside of the integral. Then,

2

[1(T_—>°°)="_
Kns

lw

“Z iy [N@ds, @
2 m?

which is of the form of a collision-broadened spectral
line.
The second term reads simply

L LY
Iy(T —w)=———{F,F*} | do. 25
B 32 m

This term does not contain any resonance at all and
thus describes a purely continuous spectrum. It reduces
identically to the bremsstrahlung continuum in the
absence of a magnetic field.

Obviously, these two contributions do not account for
the total radiation emitted by the plasma. In fact, the
third term

2¢81 = 1
Ig(T——)oo)z——/ dw—{F,F*}
32 0 m?

C

X[ch(w—wc)—Z(V/mV
(w—we)*+ (v/m)?
B 20, (wtw.)+2 (v/m)2] 26)
(wtwe)* =+ (v/m)?

shows again a resonance for w~w,.. So does the fourth
term,

261
IL(T—w)=—-
o3¢

w0 1 v 2
/ dw—{F,F*}<——)N(w), (27)
22/ m? m

which, if combined with (26), would merely reduce the
insignificant terms 2(v/m)? in the numerator by half.
Obviously, it must be true that

I(T)=1(T)+ £ 1.().

=1

(28)

This identity is easily verified with the aid of Eq. (20).

5. CONTRIBUTION FROM THE INITIAL VELOCITY

Before we discuss these findings, we have to write out
the contribution Io(7) that originates from the first
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term of Eq. (6), i.e., from
po=a exp{— (iw.+r/m)T}. (29)
The radiated energy is found to be

po=— (iwetv/m)po,

2¢21
Io(T - »)=——(wl4v*/m?)
3¢32
+o0
X/ dw{ii)w%*w()%‘?)woy—wo} ) (30)

where the Fourier components #.% etc., are defined with
the aid of Eq. (4) replacing p by po.
Following the procedures of last section, we may write

2¢21

LT =0 ) =~/ mi)
322 .
([0 (0)P-+T0, OV T f N@o, (1)

where N is given again by Eq. (20a).

6. DISCUSSION

Let us first glance at 7o. The term does not depend on
F, ie., the part of Coulomb interactions that inflict
changes on the instantaneous direction of velocity, nor
directly on ». Instead, it depends on the initial velocity.
I, is in form and origin the “cyclotron line” derived on
the basis of the simple-minded Lorentz theory.® For a
term to term comparison, it is necessary to remember
that our ““intensities” are not normalized to unit time,
thatthe collisions referred to in Ref. 6 are elastic [ (hence,
the proportionality to w? instead of (w24 »*/m?*) 7], and
that consequently our initial velocity v, remains un-
changed and is identical with “the” velocity of the
particle.

Our present assumption of random location of the
scatterers is, in principle, built into the Lorentz-type
theory as well, however, in the mathematical form of a
randomness of phase changes and a randomness of
times between collisions.”

The crucial point, however, is a comparison between
Iy and any one of the other resonance terms, in particu-
lar, I;. Whereas I, stays finite even in the limit 77— oo,
since

/‘” N(w)dw=mm/v, (32)

I, diverges for T'— 0. This can be most easily seen by
considering Eq. (20) and evoking Parseval’s theorem.®

0 T
/ {F,F*}dw~ ] F-Fdi~ (1), T. (33)
0 0

6 L. Oster, Phys. Rev. 116, 474 (1959), Eq. (14).

7 Cf. The detailed discussion by L. Oster, Phys. Rev. 119, 1444
(1960), Secs. 7 and 9.

8 E. T. Whittaker and G. N. Watson, 4 Course in Modern Analy-
sis (Cambridge University Press, New York, 1952), p. 182.
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Hence, in the limit of a long observation time, the terms
from Eq. (20) will dominate as expected.

These resonance terms represent the magnetic force
alone (I), the Coulomb components parallel to the
instantaneous velocity (I4) and the hybrid force of both
types of Coulomb interactions and the magnetic field
(I3). That they are proportional to FF* is, at first,
surprising until one realizes that the force terms are
proportional to #, the instantaneous speed, which in
turn depends on F. Each of the terms adds a contribu-
tion to the resonance amplitude, and together they
dominate at the resonance frequency over I.. On the
other hand, outside of that resonance, all four of the
terms are essentially of equal weight. Clearly then, all
four together represent the ‘“bremsstrahlung” continuum
outside of the line.

Letting the magnetic field go to O eliminates only I,
(and, of course, part of Iy).? The relative magnitudes of
the nonvanishing terms become

L/ (I3 1)~w/(v/m)>1 (34)

for most frequencies. Equation (34) can be interpreted
by noting that the radiation produced by Coulomb
interactions alone is originating predominantly in de-
flections from the electron path, and only to a minor
degree in linear accelerations. This fact is well known in
the theory of bremsstrahlung.® From this point of view,
among all the Coulomb-induced terms, I; and I, will be
dominant. This leads to another interesting observation:
If we had neglected the damping term proper from the
very beginning (» — 0), we would have encountered a
singularity at the resonance frequency, but no signifi-
cant error further out. This type of approach is very
common in kinetic theory, where Vlasov’s equation is
used instead of the complete Boltzmann equation.*

The preceding discussion makes it clear that the
radiation emitted by electrons under the combined
action of Coulomb scattering and external magnetic
fields cannot be simply expressed as the sum of brems-
strahlung in the absence of a magnetic field (72) and
cyclotron line emission (I4).

The relative importance of the interference terms (/3
and 1) is illustrated in Fig. 1. We have plotted the ratio
R of bremsstrahlung in the absence of a magnetic field
(Is) to the difference between total radiation and
cyclotron line emission proper (1),

R=1,/(Is+1s+1s). (35)

® The corresponding limit would have been illegitimate in
Refs. 6 and 7 due to the restrictions to the neighborhood of the
resonance.

107, Oster, Rev. Mod. Phys. 33, 525 (1961).

11 See, for instance, J. Dawson, and C. Oberman, Phys. Fluids 5,
517 (1962).
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Fic. 1. Ratio of
field-free bremsstrah-
lung intensity to that
of total radiation
minus cyclotron line 0
contribution, as a
function of fre-

quency in units of r 7
the cyclotron fre-
quency. o \ L

0 2 6

4 Qew/we—

Neglecting for simplicity the damping terms (v — 0,
1,—0), and introducing the parameter

(36)

Q=w/w,,

i.e., the frequency in units of the cyclotron frequency,
we have

R=2

Q-1 9+1

Q4+1 Q-1
{ } . (37)

Equation (37) holds except very close to the resonance
w — w,, @ — 1 where it predicts a zero that is physically
unreasonable. Inspection of the complete solution with
finite » reveals that

R~ (v*/mo?)w—w]™, (38)

WA W, ,

i.e., R goes to infinity at the resonance. The combination
of Eqgs. (37) and (38) is plotted in Fig. 1.

The ratio R shows a rather interesting and to some
extent unexpected behavior; for frequencies below the
resonance, the ratio is negative, that is, the cyclotron
term proper [, is larger than the total radiation emitted.
It was already mentioned above that in the low-
frequency limit, the interference terms have the greatest
influence on the result. For frequencies above the
resonance, the ratio approaches 1. Physically, this
behavior mirrors the fact that at high frequencies, the
emission is only insignificantly affected by the presence
of a magnetic field, and that the total radiation is thus
practically equal to the bremsstrahlung term. At the
resonance, finally, R goes to infinity, i.e., the total
radiation equals the contribution from the resonance
term proper, the “bremsstrahlung term” 7, is canceled
by the two interference terms.
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